Quantcast
Channel: MoneyScience: All site news items
Viewing all articles
Browse latest Browse all 4008

Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations. (arXiv:1609.05865v1 [math.ST])

$
0
0

We consider a jump-type Cox-Ingersoll-Ross (CIR) process driven by a subordinator, and we study asymptotic properties of the maximum likelihood estimator (MLE) for its growth rate. We distinguish three cases: subcritical, critical and supercritical. In the subcritical case we prove weak consistency and asymptotic normality, and, under an additional moment assumption, strong consistency as well. In the supercritical case, we prove strong consistency and mixed normal (but non-normal) asymptotic behavior, while in the critical case, weak consistency and non-standard asymptotic behavior are described. We specialize our results to so-called basic affine jump-diffusions as well. Concerning the asymptotic behavior of the MLE in the supercritical case, we derive a stochastic representation of the limiting mixed normal distribution containing a jump-type supercritical CIR process, which is a new phenomena, compared to the critical case, where a diffusion-type critical CIR process comes into play.


Viewing all articles
Browse latest Browse all 4008

Trending Articles